
Modeling a Cache Coherence Protocol

with the Guarded Action Language

Quentin Meunier, Yann Thierry-Mieg, Emmanuelle Encrenaz

Laboratoire d’Informatique de Paris 6, Sorbonne Université, Paris.

The TeraScale Architecture TSAR

 Hardware architecture designed to scale to up to 1024

core

 Hardware enabled cache coherence, logically a single

address space, NUCA characteristics

Architecture

 Asynchronous process communicating over unidirectional

shared channels

 Separate channels for direct and coherence transactions

Accessing memory

Channel Source Dest. Messages Adr. Id

PL1DTREQ Proc L1 DT_RD

DT_WR
1 /

L1PDTACK L1 Proc ACK_DT_RD

ACK_DT_WR
1 /

L1MCDTREQ L1 L2 RD

WR
1 1

MCL1DTACK L2 L1 ACK_RD

ACK_WR
1 1

L1MCCUREQ L1 MC CLNUP 1 1

MCL1CUACK MC L1 ACK_CLNUP 1 1

MCL1CPREQ MC L1 M_UP

B_INV

M_INV

1 1

L1MCCPACK L1 MC ACK_M_UP

ACK_B_INV

ACK_M_INV

1 1

MCMEMDTREQ MC MEM PUT

GET
1 /

MEMMCDTACK MEM MC ACK_PUT

ACK_GET
1 /

 Five independent networks in V5, six in V4

Distributed Hybrid Cache Coherence

Protocol DHCCP

 L2 cache maintains a directory of L1 copies of the data

 Directory is physically distributed

 Inclusive : any data in a L1 is necessarily in L2

 Write through : L2 version is always the latest

 Direct transactions

 Read, Write, Load-Linked/Store Conditional LL/SC, Compare and Swap

CAS

 Coherence transactions

 Update or evince L2 => update/invalidate all copies, wait for ACK

 Multicast update if few copies

 Broadcast an invalidate request if above the DHCCP threshold

 Count the responses in both cases

 Hybrid Multicast/Broadcast policy based on DHCCP threshold

Design issues

 Separate

Networks,

Asynchronous

behaviors…

 Errors are easy

to make, hard to

detect by

simulation and

testing

 This V4 example

deadlocks…

Applying model-checking

 Could formal verification help gain more confidence in the

design ?

 Challenges :

 Abstract from the real system faithfully

 Wide configuration space :

 Number of cores/threads, Number of addresses, DHCCP threshold

 Several versions of the protocol (V4 and V5)

 Smallest complete behavior : 3 cores, 2 addresses, threshold=2

 Observe both broadcast and multicast

 Goal is automatic verification => model-checking

 Counter-example traces help debug

Verifying the protocol

 Extract manually from the code + specifications

 Communicating automata over channels

 Components : Processor, L1 cache, L2 cache, Memory

Building a model with Promela/SPIN

 Two Master 1 students : M. Najem 2011, A. Mansour 2012

 Build the Promela model

 Formalisms of Communicating process matches the need

:: L1MCCUREQ ? m.type, eval(line_addr), m.cache_id ->

 do // Delete the cache id that did the request from the list of copies

 :: (cpt == CACHE_TH) -> break ;

 :: ((cpt < CACHE_TH) && (v_c_id[cpt] == VALID) && (c_id[cpt] ==

m.cache_id)) ->

 v_c_id[cpt] = INVALID;

 n_copies = n_copies - 1;

 break;

 :: else -> cpt = cpt + 1;

 od;

Results with SPIN

 Initial models are too detailed

 Observation automata are encoded into the model to check it’s
properties

 Cumbersome/intrusive observation mechanism for channels

 Incremental modeling of each component + verification in isolation is
possible

 Parametric features are good

 Simulator and traces as sequence diagrams are very useful

 Two versions of the protocol modeled

 More aggressive data abstraction in the second version

 Some extensions explored e.g. LL/SC

 Full verification only possible for very small configurations

 Unable to obtain full formal verification

 POR reductions limited by heavy channel usage

Modeling and Verification in DiViNe

 Master 2 student: Z. Gharbi

 DiViNe is both a language and a model checker

 Several versions, now focused on code verification

 BEEM benchmark (2007) -> LTSmin, ITS-tools, Divine…

 Similar in concept, but much more basic than Promela

 Parametric constructions with m4 preprocessor

 Channel support proved inadequate : use global variables

 Properties encoded as LTL with fairness

 Only Divine itself supports the keyword !

 Able to reproduce the deadlock + patch

 Still unable to model-check truly relevant configurations

 Integration of other tools a bit limited

Modeling in Guarded Action Language

 Master 2 student : D. Zhao

 GAL is an intermediate pivot

language for concurrent semantics

 Integers, and fixed size arrays of integers

 Parametric and compositional features

 Initially supported by a powerful SDD

engine (lots of MCC medals)

 Additional support now for LTSMin+POR

 Some SMT based verification

LTSmin SMT

A simple GAL

gal simple {
 int a = 5 ;
 int b = - 2 ;
 array [3] tab = (0, 8, - 6);

 transition t1 [a < tab [2]] {
 a = (b + 3) * 255;
 b = a * tab [1];
 self."act";

 self."act";
 }
 transition t2 [true] label "act" {
 tab [0] = (tab [0] - 1) | ((tab [0] == 255) * 255);
 }

 transition t3 [true] label "act" {
 }
}
property goal [reachable] : tab[0] == 8;

13

Indexes, bitwise operators…

Sequential
semantics

Nondetermism,
synchronization

Embedded properties

Composite and Parametric features

 Instantiation of components

 Parameters over finite range

 For loop

 Parametric transitions and labels

Modeling with GAL

 Explicit models of channels

 Two variants depending on data

 Automata directly expressed with a « state » variable

 Labels used to describe channel operations

 Description is hierarchical and parametric

 Composite description makes use of arrays of cores+L1; arrays

of L2 …

 Fine control over atomicity semantics

 Fusion of REQ/ACK in some scenarios

 No simulator

 « Unit » verification used to debug model behavior

« Unit verifying »

Verification with ITS-Tools

 Performance sensitive to the description

 Decomposition/recomposition heuristics still WIP

 With appropriate descriptions and hierarchy, full

verification is possible

 First full result on the minimal target configuration 3/2/2

 Scale up is still limited, largest configurations 3/3/3, 4/2/2,

6/1/2… even with 24h and sizeable RAM

 No deadlocks reported in any configuration

 Full LTL with fairness results still incomplete

 Data abstraction prevents verification of memory model

consistency in this version

Conclusion

 Formal modeling/verification is still a costly proposition

 Manual abstraction is not very trustworthy, but…

 Modeling all the implementation details swamps the model

 Protocol issues are not necessarily in the routing/transport
details

 Different solution engines/tools have different strengths
and weaknesses

 Lack of a more uniform description language, well supported
by several tools (e.g. SMT equivalent)

 Model-checking was part of the result

 A lot of confidence and understanding was also gained purely
by building the formal descriptions themselves and debugging
them

